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ABSTRACT

The stability properties of six different adaptive schemes with
respect to model order error are analyzed. Bounds on parameter identi-
fication and state errors are established. All adaptive'schemes considered
are robust in the sense that the error is of order of the 'speed ratio u"
between the modeled slow phenomena vs. the neglected fact. The dependence

"of the error on the input signal is shown to be crucial. The bounds
obtained indicate possibilities for reducing the error by a proper choice

of the input signal.
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1. INTRODUCTION

Global stability properties of model reference ﬁdaptive systems [l]-
[10] are guaranteed under the "matching assumption" that the model order is not
lower than the order of the unknown plant. Since this restrictive assumption is
likely to be violated in applications, it is important to determine the robust-
ness of adaptive schemes with respect to such modeling errors. Recently several
attempts have been made to formulate and anslyze reduced order adaptive identi-
fiers [11]. The results of such studies depend on the characterization of the
model-plant mismatch.

In this paper we examine stability properities and performance of
various types of identifiers and adaptive observers [l]-[lO].when the model-
plant mismatch is due to a fast ("parasitic') part of the plant, and the order
of the model is equal to the order of the slow ("dominant') part of the un-
known plauc. We exfress our results in terms of a '"speed ratio" u of the slow
versus the fast phenomena. Scalsr u is small and positive and u { 0 means that
the fast part of the plant reaches its steady-state instantaneously, that is
the plant order reduces to that of its slow part. The fictitious "reduced-
order" plant i: thus obtained when in the actual plant u >0 is replaced by
u=0,

This singular perturbation approach is a convenient parameterization
of the model-plant mismatch. In our formulation adaptive observers are designed
for the reduced order plants, but they are applied to the actual plants. In
Section 2 we derive a singularly perturbed state space realization of the plant
and give a statement of the problem. In Section 3 we analyze the stability

properties of an identification scheme [1l], [2] employing a lower order model




and we obtain bounds for parameter identification and state errors. In Section
4 we analyze the stability properties of reduced order minimal adaptive observers
[5]-{7) applied to actual plants and obtain bounds for parameter and observation
errors. The stability properties of a nonminimal adaptive observer [4], [8]
designed for a lower order plaﬁt and applied to the actual higher order plant are
analyzed (Section 5) and bounds are obtained on the parameter identification and
output errors. In Section 6 similar results are obtained for the parametrized
adaptive observer [9]. A qualitative analysis based on these bounds is given in

Section 7 illustrated with computer simulation results. Particularly important is

. the sensitivity of the parameter identification er.or with respect to the excita-
b tion input signal.
l:
0 2. PROBLEM STATEMENT
l . Systems possessing .. . and fast parts can be represented in the
a2xplicit singular perturbation form
X = Allx + A12xf + Blu (2.1)
14
. Hxe = Ale + A22xf + Bzu (2.2)
y =¢c'x (2.3)
where x, X, are n and m vectors respectively, u is an r control vector and u is
a small positive parameter associated with the presence of 'parasitic" elements,
such as time constants, masses, etc. [14]. The mat e
‘ [14]. T rices All’Alz’AZI’A22’Bl.andB2
have appropriate dimensions.
Without altering the input-output characteristics of the system we
will use the transformation ([13] 7 = g + Lx + Angfu and analvze the equivalent
)
' representation
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3
X = Ax + Bu + HY| (2.4)
. -1 .
W = Acn + LAB G (2.5)
y =c'x (2.6)

where

A=Ay -Appls Ap = Ay +ul4y,, B =B, + ulB,

= - -1 =
B =By =818 B H=4yy
L satisfies the algebraic equation
A22L - A21 + uLAlzL - ulAll =0 2.7

Approximate expressions for L, A, Af and B are

1

L= A)58,, + 0(w) : (2.8)
= - -l = '
A=A -A AL F0(N), A=Ay, +0(k), (2.9)
-1
By = B, +0(K), B = By ~A1,A 0B, +0(K) (2.10)

Representation (2.4) - (2.6) containing is found to be convenient for getting

tighter error bounds and clarifying the dependence of the error on the characteris-

tics of the input.
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The part of the system described by (2.4) and (2.6) will be referred
to as the dominant part of the plant whereas (2.5) will be called the parasitic

part of the plant. Suppose that an adaptive scheme is designed for the n-order

dominant part assuming that there are no parasitics ie HT, = 0. This scheme is

then applied to the actual plant with parasitics. The purpose of this paper is
to examine the robustness of the scheme with respect to the parééitic part of
the plant and to obtain bounds on the parameter and output or state errors.

Throughout the paper the following assumptions are made:
(i) A isstable and Ag 1s asymptotically stable
(1i) The order of the dominant part of the plant is known

(iii) The tripple (A,B,C) is completely controllable and completely

observable
(v) The only available signals are u(t) and y(t)

(vi) u(t) and a(t) are piecewise continuous bounded functions

of time.

It will be shown in the following sections that the stability of
several adaptive algorithms in the presence of parasitics is equivalent to the

stability of a linear time-varying equation with a parasitic input

Z(t) = A ()2(r) + HN(e) (2.11)

where Z(t) is a composite error.vector. It should be pointed out that (2.11) is
not input n to state Z(t) linear because An(t) depends on x which in turn de-
pends on n. This dependence will be explored for each particular scheme. OQur
approach is to first derive conditions under which the homogeneous part of

(2.11) 1is uniformly asvmptotically stable (u.a.s.) for each n of interest.

. - I S e - e PRI S S V0 .




After these conditions are found, Lemma 1 is used to obtain bounds on Z(t).
Lemma 1: If the homogeneous part of (2.11) is u.a.s. then Z(t) is bounded.

A bound on the norm of Z(t) as t +~ is of order of u and is given by

-1

™%
lim 1Z(e)l <uy === Tul lAf Bfﬂ (2.12)
o By %9

and m, such that

Proof: Since (2.11) is u.a.s. there exist positive numbers my 2

its transition matrix ¢(t,Tt) satisfies

-mz(t-r)

Te(e,t)l <m_ e

1 for all t#1 and all t20

Therefore from (2.11) we can write

t -mz(t-r)

-m,t
1Z(t)l Smje 27 z0)0 + [ VRl En(t)ldr (2.13)

Since A_ is asymptotically stable and u(t) is bounded by assumption we set from

£
(2.5)
In(e)l < e I+ st -az(t;t)u “lp
n(t) e Ino)l + foale Ag Belvydr (2.14)
where v = sup la(t)l and a,, a, are positive constants. From (2.13) and (2.14)
toT
we have
m, a -m,t
1 oo, ,-1 2 FURO)L
{ i < —_ = i I -
[Z(e)t < yuy = = 2} Af Bﬁ + m, e {tzco)l M o =)
2 %2 B 27 %
Y
-1
o, m a la_ s _lial o m I8l -a.t/u
a2 Eamnatla buy Lo £ Ll 27 o) (2.15)
a, m f °F a 1 a o
22 2 T, - D (m,--2)
2 u 2 u
-1
. "Af Bf"}
%2

and (2.12) follows as t ~=,




LI #1
»

Bound (2.12) is convenient because it w' 1 be shown that factor
m, &

uy —l-—i |Af fﬂlﬁﬂ remains the same for all adaptive schemes considered in this
My %2

paper. The dependence of (2 12) on b confirms that the schemes are robust because
Z—0 as 0, The factor — 3, HA lanHuH is determined by the parasitics, n;
depends on the initial error Z(0) and m, depends on the rate of convergence with-
out modeling error. The presence of parameter Y characterizing the input will be
shown to have a crucial effect on the parameter and state errors. In Sections

3, 4, 5 and 6 we establish u.a.s. of the homogeneous part of (2.11l) and derive

specific forms of the bound (2.12) for six different adaptive schemes.

3. TIDENTIFICATION {1],{2]

It is desired to identify the pair (A,B) in (2.4) by using an nth
order model and assuming that the state vector x is available for measurement.

The presence of the parasitic input HT is disregarded in the design of the

s ouara
N

identification algorithm.

The nth order model for the identification of the pair (A,B) is given

by [1}, [2]

Ty e

Y

x = K(xm— x) + Am(t)x+Bm(t:.)u (3.1)

— Y

where K is a stable matrix and the adaptive laws for adjusting Am(t) and Bm(t)

are
3
3
P . .
o ¢ = -rlex' (3.2)
¥ = -Tyeu’ (3.3)
where ¢ 2 A (t) - ¥ 3 Bm(t)-B and e & X, "X are the parameter and state

= ! a !
errors and l'l 1‘1 >0, 1’2 0 >0.

‘ . et i
P an
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In the absence of parasitics (n=0) it is shown in [2] that if u(t)
is sufficiently rich for an nth order plant (ie the components of u(t) are

linearly independent and each component contains at least E%l distinct frequen-

cies) then e, ¢, ¥+ 0 as t+=, The stability of the identification algorithm

in the presence of parasitics is equivalent to the stability of the following

system.
e = Ke + ¢x + Yu - HN : (3.5)
¢ = -Flex' (3.6)
: = - eu’ 3.7
i ¥ = -Treu (3.7)
é! - where (3.5) is obtained by subtracting (2.4) from (3.1). To express (3.3)-(3.7)
E as a linear time varying equation in the form of (2.11) we define Z(t) = (e',9',¥']"

where ¢ = [¢1,¢2,...,¢n]', Y = [vl,wz,...,wn]' and ¢i’ wi are the ith rows of

v

¢ and ¥ respectively. Then we denote

E B fx" O Do’ 0-*
\ B A u |
g P - (3.8)
L An(t) __lf_; 0 ’ H 0
3 g ‘
: |2 | _
F where
: - —

W, | @]
r 1 % 1 %
- -
b 1) (2)
. r a Yy ¥ o= Y2 Y
[ Tix 2. 2] 2u .

1 2
L Lyr(ll)xn LI(.‘ ur

(1)

and v, is the jth row of Fi, i=1,2. To apply lemma 1 we now investigate
J

whether

LN e o o e oo o s

4 f e e e e e A e e s e a 4 aea ma mm om e temm e an
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L" .

n Z(t) = An(t)Z(:) (3.9)
L is u.a.s. or not. The stability of (3.9) can be easily established by choosing

the same Lyapunov function as in [1], [2] for the case without parasitics (n=0).

However for u.a.s. the components of the vector [ii] have to be linearly indepen-

e -
1. b . [P

dent functions of time. A sufficient condition for the case n=0 is that the

components of u(t) be linearly independent and each component contains at least

J. E%l distinct frequencies. In our case x depends on n which in turn depends on

i. Thus in some cases n might destroy the '"richness'" property of u. This can

be avoided by choosing u such that the components of the vector [x',u',n']' are

linearly independent functions of time, for which a sufficient condition is that

the compohents of_[u',ﬁ']' be linearly independent and each componment of u be the

n+m+l
2

the components of [x',u’'] are linearly independent functions of time and (3.9) is

sum of sinusoids with at least distinct frequencies. This implies that

u.a.s. Thus, lemma 1 immediately furnishes bound (3.4), since FHI =1HI. We

summarize this result in theorem 1.

Theorem 1: If u is sufficiently rich for the (n+m)-th order plant and the compo-
nents of [u',4']' are linearly independent then the identification algorithm
(3.1)-(3.3) is stable in the sense that the composite error Z(t) is bounded. The
bound is of order of u and is given by (2.12).

Remark 1l: To guarantee the u.a.s. of (3.9) it is sufficient to make u sufficiently
rich for the highest suspected order of the actual plant. Although this is a
feasible approach in most applications, there is a considerable '"overkill" in
reéuiring this richness. In fact it can be shown that the system (3.9) will

remain u.a.s. for almost all u which are sufficiently rich for the nth order

‘ r
dominant part of the plant only. For example each component of u can contain any
+ . . .
Ezl distinct frequencies except for a particular combination for which the condi-
“ tion of linear independence of x and u can be lost.
[ ¥

) L. . L s -
L_._._,A_LAL___A.,, R N o




4. MINIMAL FORM ADAPTIVE OBSERVERS (7]

The plant (2.4)-(2.6) is assumed to be single input single output and
.r an nth order adaptive observer is designed to estimate the state vector x of

: .E_ the dominant part of the plant and to identify the triple (A,B,C) or its equiva-
lent. The presence of the parasitic input HT is disregarded during the design.

; The stability of the adaptive observer operating on the real plant in the pres-

ence of the parasitic input is then analyzed. Two different types of minimal
fae adaptive observers are considered separately, Case 1 and Case 2.

\ Case 1. Adaptive observer [6]

Without loss of generality let us assume that the model of the

dominant part of the plant (2.4) is in the observable canonical form

I I
x= | -a R x + Bu + HY (4.1)
i
X e |
\
un = A_n + uA-lB a (4.2)
f £f °f
. y=c¢c'x=[(10..0]x=x (4.3)

1
The algorithm [6] for the nth order adaptive observer based on the

dominant part (4.1), (4.3) without the parasitics (M1=0 in (4.1)) is given by the

EZ
E

equations (4.4) through (4.11), below. The observer equation is
: =Kz + [k-a(e)]y +b(t)u+w+r (4.4)

y=c'z =2 (4.5)

1
e

where w and r are auxiliary signals formed by the output error e, & §-—y and

1

the components

PSR : Py . " mina . PR P |




B e A R S T N T T T T L e T T T e =
v
10
n-1 n-i
v, = i X,, qQ, ™ 5 u (4.6)
v 1 sn-l+dzsn-2+-...+d 17 sn-l+d sn.2+...+d
- n 2 n
J . of the vectors v and q as follows:
: - - - -
0 0
’ ?
v I‘sz q MAZq
- YR viTaw |* T T q'MA,q 4.7)
v '1:‘A v q'b:IA q
- Matrices Aj are
n-j+1 2
0 -dj -dj+l o o "dn 0 . O )’
0 0 -d, . o = - 0 . 0
. ] dn--]. dn ‘
, 53-1
' ’ ’ I
. 00 o0 0 =d.. . -d !
J oy
. 0 . )
i N A - 0 1 4, S 0 0 4.8)
' 3 - 0 O
0 01 d2 . clj_2 dj-l
¢ * pa-j+i
0 0 0 . 1 d2 d3 o e 'dj-l l
_ )
and T =7' >0, M=M" > 0 while
- :
K= |k ,===-- , d=1]d (4.9)
i 2
, O .
2 d
L P
are chosen such that c'(sI-K)-ld is positive real. The adaptive laws for
updating the estimated parameters are given by
)




M el

11
'; = -I’elu--é(t) (4.10)
¥ = Meq= fe) T (4.11)

where ¢ & a - a(t) and ¥ 4 b(t)-B are the parameter errors.
Case 2. Adaptive observer (5], [7].

The following "modal" canonical form is chosen for the dominant part

of the plant (2.4)

hl
i
x= |aj-=--|x + Bu + HY (4.12)
I A
un = A.n + pATYBad (4.13)
N = AN £ °f .

y=c'x=x (4.14)

l .

where h'= [1 1 ... 1], A is an (n-1)x(n-1) diagonal matrix with arbitrary but
known constant and negative diagonal elements -li (i=2...n) and a, B are the
unknown vectors t; be identified. It is shown in [5] that any completely observ-
able system can be represented in this ''modal" canonical form. The structure

of the adaptive observer based on (4.12) with n=0 is summarized in the equations

(4.15) through (4.20). The adaptive observer equation is

2 =Kz + (k-a(e))y +b(t)u+w+r (4.15)

§v = clz = zl (4.16)

where w and r are auxiliary signals formed by the derivatives of the parameter

error components and the components

1’ 9 *gF U (i=2,..n) (4.17)

of the vectors v and q as follows

I e A B A A A S N S T Y

PR U Y S U A o w



Ty r

Y WPy

—————

0 r-O
b,V ¥.q
2], ral 2 (4.18)
.?nvq ;g“?_
—Xl I h' B -1 1
Moreover K = | is stable, the transfer function ¢'(sI-K) “d = Py
R P— 1
M R
0 |

is strictly positive real, and d = (1 0 ... 0)'. Note that the first components

of the vectors v and q are vi®X, q =y, respectively. The adaptive laws for
adjusting the parameters are
- :
o= -Felu = 4(t) (4.19)
Y = -Melq = b(t) (4.20)

It is shown in Appendix I that the stability of the adaptive observers in case
1 and 2 in the presence of parasitics is equivalent to the stability of the

following set of differential equatioms.

e =Ke +d[¢'v + ¥'q] - Hn (4.21)
€ =e (4.22)
¢ = -Teyv (4.23)
Y o= -Me g (4.24)

where K, d, v and q are defined differently in case 1 and 2

It is shown in [7] thact if u(t) is sufficiently rich for an nth order
plant (ie it contains at least n-distinct frequencies) without parasitics
(Hn=0) then the system (4.21)-(4.24) 1is u.a.s. To study the stabilitv of the

algorithm with parasitics (Hn#0) we express (4.21)-(4.24) in the form of (2.11)

o > - : -~ & & o a2 oo = P o ig__‘A_J
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I {
K i du' . dq'
i ) -
A (t) = -ru ! l , He=|-— (4.26)
n ---f--: oI 0 0 -
-Mq " N

The stability of the homogeneous part of (2.11) can be shown using the same
Lyapunov function as in the case without parasitics [7], [12] and it is not
influenced by the fact that An(t)dependsonTL However the proof of u.a.s. is
different.

Theorem 2: If u(t) is sufficiently rich for the (n+m)th order plant then the
homogeneous part of (2.11) is u.a.s. and the error vector Z(t) is bounded by
(2.12).

Proof: For u.a.s. of the homogeneous part of (2.11) a condition has to be
imposed on u(t). This is a consequence of the fact that the components of the
vector [v',q']' have to be linearly independent functions of time. This implies
that the components of [x',u]' have to possess this independence property . It
can be shown that if u is sufficiently rich for the (n+m)-th plant, then the
components of [x',u,n']' are linearly independent functions of time. This
implies that the components of [x',u]' are linearly independent functions of
time hence the homogeneous part of (2.11) is u.a.s. Thus using lemma 1 (2.12)

)
.

follows.

Remark 2: As in Remark 1 in this it can also be shown that u.a.s. for the

homogeneous part of (2.11) can be achieved for almoest all u which are sufficiently
rich for the nth order plant. That is if u contazins at least n distinct
frequencies except for a particular combination for which the condition of linear
independence of the components of [x',u]’' can be lost then the homogeneous part

of (2.11) is u.a.s.

D P U P S - L
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5. NON-MINIMAL ADAPTIVE OBSERVER [4], (7], [8]

A non-minimal state representation of the plant (2.4)-(2.6) is

. "~ (see Appendix II and Fig. 2)
pa—— ﬂ ] ———— r —— — - r — s .
hd ) L '
y a, a, bs h y bl 0 1
4 h A 0 o0 ||z 0 0 0
M s |+ u+ m+]|: [nd S (5.1)
- W 0 0 A 0 W h 0 .
s s .
R 0 0 0 A R 0 T 0
N s s s
<. S . ot lae e and e el e d
y=[1 0 ...01]y
Z .
s (5.2)
oL W
u s
y R
s
j ‘ . -l »
: . un = Acn + WA B (5.3)
n where h' = {1 1 ... 1] and A is as defined in Section 4.
- . At
S ——he" x(0)
! ToHn——{ g |2
{ ] 2: 17 S+X2 ! ‘ l ~y-z
| n 3 ‘
: 1) »
! - |'n A\
ToH7 S+ z J
p
s u
b
3
b
f 1 ;
~ : S+x '
b ! : 2
] : :
S+,
!' Fig. 2. Non-minimal representation of the dominant part of the plant
)
k. e . " R L N .
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The structure of the adaptive observer for (5.1), (5.2) in the absence of
parasitics ‘(ie n=0, RS-O) is given in [4], [7] and [8) and the basic equations

are reviewed below. The observer equations are:

y = al(t)y + as'zs + bl(t)u + b'(:)wé--~xl(y*y) — (5.%)
z, =AZ_ +hy | (5.9)
W Aws + hu (5.6)

where y(0) = 0, 25(0) = Q, &5(0) = 0, The adaptive laws for adjusting the un-

known parameters are given by:

$ = -I‘elv (5.7)

¥ = -Me (5.8)

lP

A 2 - 2 - ' A L - h - '
where ¢ 3 [(a,(t)-a,), (a(t)-a))'], ¥ o [(b,(t)=b;), (b(t)-b_)'] and
v = [y,Z;]', p = [u,ﬁ;]'. The stability of the non-minimal adaptive observer

described by (5.4)-(5.8) in the presence of parasitics is equivalent to the

stability of

. e et

¢, = —Xlel + d{v'¢ + q'¥] - h RS-h L x(0) (5.9
¢ = ~Te, v (5.10)
y & -Me, p (5.11)

where (5.9) is obtained by substracting (5.4) from (5.2).
Theorem 3: If u(t) is sufficiently rich for the (n+m)th order plant then the
vector 2(t) = [el,¢',w']' is bounded, the bound is of order of u and is given

by




...............
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K a ‘ £
: Lim 12(0)1 < uy L L Ty RUNTER:L -gi (5.12)
LT e B2 %2 2 ,
] . Proof:. We express (5.9) through (5.11) in a compact form similar to (2.11)
(g
\ . Z(t) = An(t)z(t:)+ARRs(t) B ‘(5.13).
where
- _
"' r-")‘1 jdv dp —
| -h'
|
! A (t) = -Iv = leo (5.14)
e n b o g 0
. -MP |
- - | .
and note that An(t) depends on n through v.
The stability of the homogeneous part of (5.13) is proved in (4], [7],
u {8}, {12) by choosing an appropriate Lyapunov function. However for u.a.s. the
input u(t) has to belong tec a special class of inputs. When n=0 it is shown in
' [7] that a sufficient condition for u.a.s. of the homogeneous part of (5.13) is
that u has to be sufficiently "rich" for an anth order plant. Using the same
argument as in the proof of Theorem 2 it can be shown that if u is sufficiently
rich for the (n+m)th plant the u.a.s. of the homogeneous part of (5.12) is
T assured. As in Lemma 1 u.a.s. of (5.13) implies that
-m,t II t -mz(t-r)
< I .
1z(e)! m e fzco)i + fomle ﬂA.Rﬂlle('c) de (5.15)
From (5.1) for some positive constants El, 52 we have
I 1< e 20w 5.16)
< - .
Rs(t:) - foile TSH n(t)hd (
e
from (2.4), (5.13) and (5.16)
o

L,,. e m A s A m A s N T aoaN . PRSP P P - - .a




. = o v,
T — ‘,_‘vv'v‘;
.
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1yt e B N R
1z(t)t <m1e fhz(o)t - u n) a—'g- |A I|ARl|'rsni]
-Ezt -mzt
(¢ ~-% ") M- 1, 1 -1
* Ty e Al [IR_(0) wy = :, AT's, -rul(g2 )
8277 (5.17)
-a.t/u m, t
2 2 i IIT Bl
+ L& =t ), m, = (In(o)¥ - uy |A lg el
a, 1 a, /
(mz - T) (&, -—u') .
+ uy —1—1 121z TER:TW !
@ my £ f R E)
m e §
As to tiz iz (&) <py —; —;-E; lAf BfﬂlTsHIIARﬂ. Note that lAR“ = |hl hence
(5.12).

It is pointed out that Remark 2 applies to this case as well.

6. PARAMETRIZED OBSERVER [9]

It is shown in Appendix III that the plant equations, (4.1)-(4.3)

can be written as

M(t) = FM(t) + [Iy, Iu] M(0) = 0 (6.1)
. X(t) = M(t)p* + EXP(F t)X(0) + D(t) (6.2)
D(t) = FD(t) + Hn(t) D(0) = 0 ‘ (6.3)
. .=l .
un = Afn(t) - uAf Bfu (6.4)
y =c¢c'x = x (6.5)

where p* contains all the unknown parameters of the matrix A and vector B in
(4.1). The adaptive observer [9] for observing the state x and estimating p=

when D(t) = 0 is reviewed below. The observer equation is

............. e a . a s m 4 8 A A a A A m e e e e et Ml 4 e e e e A A M A A A A A m e~
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x(t) = M(t)p(t) + EXP(F t)x(0) . (6.6)
y(t) = c¢'x , 6.7)
The form of the adaptive laws for updating the unknown vector ﬁ depend

on the particular criterion chosen for minimizing the output error él 4 y - y. .

For the first adaptation scheme the error criterion is

S %’ei A ‘ (6.8)

and the adaptive law {9], [10] is given by

a B = -ar(e)e e (6.9)
where G = GT > 0.
For the second adaptive scheme the error criterion is
Z, = f:[c'u(r)ﬁ(c) + C'EXP[FT]R(0) - y(1)]1e (g, (6.10)
where q is a positive constant, and the adaptive laws [9] are
p = GI[R(E)B(E) + r(t)] (6.11)
R(t) = -qR(t) + M'(t)ecc'M(t) R(0) = 0 (6.12)

£(t) = -qr(t) + M'(t)c[c'EXP[Ft]x(0) - y(t)]  r(0) =0 (6.13)

We now analyze the stability of each of the two adaptation schemes in the
presence of the parasitic input. We also derive bounds for the composite identi-

fication and observation error

x(t) - x(t) e(t)

z(t) = | = (6.14)
p(t) - p* ap(t)

. .
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In the first adaptation scheme the state error e and parameter

error Ap satisfy

é = -M(t)GM'(t)cc'e + [FM(t) + (Iy,Iu)]lap + exp(Ft)Fe(0) - FD(t) - Hn(t)

(6.15)
Ap = ~GM'(t)cc'e ' (6.16)
Combining (6.17) and (6.18) the equation for the composite error Z(t) is
Z(t) = A (D)Z(t) + B (t) ‘ (6.17)
where
-M(t)GM' (t)ece' M(t) + [Iy,Iu]
A (t) = (6.18)
n -GM'(t)ece! 0 :
and
effFe(0) - HT(t) - FD(t)
Bn(t) = (6.19)

i - The following Theorem establishes the condition for the u.a.s. of

' the homogeneous part of (6.17) and gives a bound for Z(t).

Theorem 4: If u(t) is sufficiently rich for an (n+m)th order plant then the
nth order adaptive observer given by (6.6), (6.7), (6.9) isfstable in the
presence of the parasitic part (6.4) of the plant (6.1)-(6.5) in the sense that
the ;omposite error vector Z is bounded. A bound on 2 as

t+o is of order of 1 and is given by

a, m f
lim 121 < uy a—l ;} ﬂH"“A;le" 1+ -fl 1FY] (6.20)

t 2 2 2

{ Proof: 1If u is sufficiently rich for the (n+m)th plant then the components of




r—yp—yrer
P
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M'(t)ec are linearly independent functions of time [9]. This implies that

there exist constants kl, k2 and T such that
E+T, | . )
0 '<K11 < ft M'(T)ece'M(t)dT < K21 for all t 2 0 (6.21)

is satisfied. Using the same proof as in Theorem 1 of [9] Lt can be shown that
if (6.21) is satisfied then the homogeneous part of (6.17) is u.a.s. with the

rate of convergence no less than m. where

2
Kl min A[G]
m, = 3 (6.22)
[l+nK2 max A[G]]
Thus from (6.17)
-mzt c -mz(t-r)
Iz(e)l < mlz 1zo)l + fomll IBn(r)ﬂdr (6.23)
-fzt .
ﬂBn(t)II<f12, IFe(0)) + AHlln(e)t + UFHID(E)E (6.24)
. -fz(t-r)
and In(e)l < fofle Tl ln(c)ldr (6.25)
From (6.23), (6.24), (6.25) and (3.4)
-f.t -m.t
-m,t 2 2
2 . (2 -2 )
Iz(e)l < mlz lzo)! + plml (mz — fz)
-a,t/u -Mm, -m,t
2 2 2
+ p,m, (2 ; 2 ) . Py Q'—-I%——)— (6.26)
2 2
(m2 - T)

where s fl are tositive constants, f2 Smin |A[F]| and Py» Pys Py are given by

a
1,.-1 1 1TEl gl I n(o)! -
= f e i - - Triipl —i— .
Py [fl Fe (O + uvy = “Af Bf fl( 3, fZ alfl Flingh i ] (6.27)
r:2' u (f2 - u)

' o}
LELE Y | hgl 1m0y -y 2 1aTlp 1 (1
3 1 a £ °f 2
(£, -=2) 2 £ -2
2 2 u

Py = (3£ + 11l ] (6.28)

]
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a £
1l -1 1
Py = WY —°'2 lAf BfHHI [1+ —-fz iFt] (6.29)

As t+o (6.20) follows.

In the second adaptation scheme the state and parameter errors

N satisfy .
g & = [FM(t) + (Iy,Iu)- M(£)GR(t)]ap - M(£)G f:w(r)cc'z“e(on‘q“")dr
t e A
+ M(8)G M (Dee'p(0) 0 Dyge + 2FPre(0) - FD(E) - HA(e) (6.30)
e )

L and
- Laal
4 - v 1o FT "Q(t-‘l’) €t ' 'Q(t-T)

Ap = -GR(t)4dp = G S M'"(T)cc'Ll "e(0) dT+G S M'(1t)ce'D(T)2 dT
[ (o} o
3 (6.31)
Ei respectively.
n ﬂ By defining the composite error Z as in (6.14) it can be easily
b shown that the stability of the second adaptation scheme is equivalent to the
- stability of
F Z = A () +E(t) +C(t) + R(e) (6.32)
E‘ _
{ 0 [FM(t) + (Iy,Tu) ~ M(t)GR(t)]
8 where A (t) = . (6.33)
- n 0 - GR(t)

2Ftre (0) - M(e)G f;M' (T)cc'ﬁFTe(O)z’q“‘T)

* E(t) = (6.34)
r |- GJ';M'(r)cc’zFTe(O)z-q(t-r)
: - FD(£) ~ HI(E) +M(6)6 /52 (Dee'n(0) 2™ W Doy
b c(t) = (6.35)
S 0
3 )
X 0
’ K(e) = e (6.36)
*» GfiM'(r)cc'D(t)L alt ‘)dr




Theorem 5: If the input u is sufficiently rich for the (n+m)th order plant

Proof: Since u(t) is sufficiently rich for the (n+m)th order plant the
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Note that E(t) vanishes with an exponential rate not less than min {fz,q}-wz.
The u.a.s. of the homogeneous part of (6.32) and a bound on the

composite error Z(t) are established by the following theorem.

then the nth order adaptive observer specified by (6.6), (6.7) and (6.11)
through (6.13) is stable in the presence of the parasitic part of the plant.

The bound on Z(t) as t+» is of order of u and is given by

£3
m, a £ &
Lim 12(e)1 <uy =L =L 147 Lp imt 12 ver+-L % 'G’[(1+£1 IBIYS
oo my % 2 £ q 2
+ uy = Lyaly Ilﬂnll] — [(1+— nBI)6+uy——‘ﬂA B 1hul]] (6.37)
E f 2 q g 3 f °f
2 £ 2 % 59

components of M'(t)ec are linearly independent [9]. This condition guarantees

the existence of constants K and T such that

ST (1) ee "M(T)dT > KI > 0 for all 30 (6.38)
t

In Theorem 3 of [9] it is shown that if (6.38) is satisfied then the
homogeneous part of (6.32) is exponentially stable with a rate of convergence

m, = min[q,ezl where

5, = k29T pin A[G] (6.39)
Thus for some positive constants wl, sl, el, Gl’ El and nl it can be
shown that 1
|
ot ¢ "my(e=1) |
Iz(e)t < m, e 2°hzoyl + my fo 2 (hE(Y « Ic()! + 1K) ]dx(6.40)
-wzt
Te(e)! < wlz (6.41)
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-szt al -1 fl
fc(e)l < s;% + uy == bA_"B_IIRN[1+=tFl] + EIM(E)DIKR(E)] (6.42)
az f f f2
-e,t £ 13 a, § -
IM(E)l < e, 8 2 4 =k [(L+== 1B1)§+puy == =L I1g1a~1E 1] (6.43)
1 f & a, £ f £
2 2 2 52
2
-6t £, ¢ 4
IR(e)] < 6e 2+ py -2 LG -1yt 18)s
1 29, 4 f°f £,
2 (6.44)
1 Ell 1a-lp
+ uy “2 5—2 H Af Bf ]

Then from (6.40) through (6.44)

2
-n.t m, © - f f g
lz(e)l < n g 2 .,.u,{_l_llA 1z gl 1 +—]-'-||F|+—1&((1+-—IIBI)6
-1 2% £f £, g2 4d &2
: 2
3
@ & _ £ § @ & . -
euy 2L s iy + 2180 (e miys ey - 2 aatlz nan?] 6.45)
a. £, A Bg 3 q 3 a, £, Of °f
) £ 2 2 &2

y %2 %2
where sz=min_[—u- £,1, ez-min[-u— 1695 f51

6, = min[sz,q], n, = min[52,€2,62],

§,< min|A{A]]| and & =sup u(t) for all t > 0. As t+= (6.45) reduces to (6.37).

Remark 3: 1In both first and second adaptation schemes u was required to be
sufficiently rich for an (n+m)th order plant in order for conditions (6.21) and
(6.38) to be satisfied. However, as it was pointed out in Remark 2, for almost
all u sufficiently rich for an ath order plant the results. obtained will still

be valid.
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7. DISCUSSION

In all the error bounds derived in the preceeding sections the

common factor is

m, &
1 _1y,-
KY z, 3 ||Alef||||H|l (7.1).
;! i The most important terms appearing in (7.1) are K, th; "speed ratio" of slow
L ]

vs fast phenomena, and Y which is a characteristic of the input. The dependence

ot the error bound on Kk shows that the adaptive schemes considered are robust

with respect to the parasitics in the sense that as =0 the error bound gces
to zero. We demonstrate the effect of » and Y by digital simulation of the

adaptive observer (Section 4, Case 1) for the plant.

. -5 1 0.9 1.45 .
X = x + Xe + u (7.2)
-10 © 0.5 2.25
Pni:f = -4xf - 2u (7.3)
8
¢
y = [l O0]x (7.4)

Using the transformation n=xf+0.5u the plant state equations

Nt I S 0 Ao uu e e g
-

. become

N

- -5 1 1 0.9

! x = X + u + 3 (7.5)
-10 0 2 0.5

- W = =47 + 0.5Hu (7.6)

E" ;: '

& y = [1 O]x (7.7)

The adaptive observer tor (7.5), (7.7) with 7=0 is




v v -

..........................................
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-6 1 6«-51(c) Sl(c) -0 0
zZ = z + o y + G u-el . -el .
-8 0 8 -az(t) 2(t) v Esz q MAzq
. oo (7.8)
where
0 -3 140 O 5 0 - - -
Az- : , ['= , M= and

0 1 0 75 0 7.8

the components of the signals v and q are generated by
v, = -3v, +x;, =V, 4 =-3q +u=gq; (7.9)
The adaptive laws for adjusting the parameters are taken as

a(e) = re v, B(t) = -Meyq (7.10)

The dependence ot the error bound on K is illustrated in Figs. 3 and 4. For
#=0.2 and input u=5sint +5sin 2.5t that is Y =18.2, the observgt:.on error e,
is relatively small. However the parameter errors are significant: 10.4% tor
51(:) and 12% for Sl(c). Reduction of K by a tactor &4 that is ¥ =0.05 results
in a reduction of the parameter errors by approximately the same tactor as
shown in Fig. 4b, c¢. The observation error e, is almost zero in this case
(Fig. 4a).

To examine the effect of Y -suplﬁ(t)l on the error bound the value
of K is kept the same as in Fig. 4 but the input is changed to u =5sint 4+
+ 15sin 2,5t that is Y is increased to Y =42.5. The results obtained are
shown in Fig. 5. It is clear that the value of Y is crucial for the error bound.
Increasing Y by a tactor ot 2.3 reéults in an increase of the parameter error
by a factor of about 10. Moreover the observation error although bounded, is

oscillatory and not close to zero.
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The abov; simulation results show that the choice ot the excitation
input signal is critical in adaptive schemes with modeling errors. The etfec;
of the input on the erro:r can be even more crucial than the effect of k. “
Rapidly varying inputs (high Y) will result into bad estimates of parameters

-and states.  Inputs of this class excite the p#ra;lgiéhiééci;f~:he éladt
considerably and have adverse effects on the results of ;daptiQe schemes with
modeling error. Caution is needed in selecting an input excitation signal.

Qur results show that the richness condition, should be satisfied but with an in-
put which has a low value of Y. Slowly varying inputs are appropriate as long
as they do not reduce the convergence rate considerably.

Convergence rate m, with which Z(t) exponentially decays in 2=-Aﬂ(t)z
is sensitive with respect to Y only for very low values qf Y. Thus we can
improve the error bound by keeping Y as low as possible for m, not to be
affected appreciably. From (7.1) it is clear that larger m, reduces the error
bound. However m, depends on the input u and on the adaptive gains and, hence,
for low values of Y there is a trade-off between Y and m,, that is m, camnot
be improved through the choice of the input. 1Its improvement by the choice

of the adaptive gains can only be done by trial and error since in all the

adaptive schemes considered, except in the parametrized observer, m, is not
explicitely related to the adaptive gains. In the case of the parametrized

adaptive observer the expression for m, gives more information about the

dependence of the error bound on other quantities, For‘the first adaptation
klmink[G]

scheme m, = 7 - In this case the best we can do to improve
[L+n kzmaxk[G]]

m, and consequently the error bound is to make max A[G] = min A[G]. The

dependence of m, on the order n of the dominant part of the plant indicates
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! l that the error bound will be higher for a higher order dominant part of the
plant. For the second adaptive scheme m, -min[q,92] where 92 -Ke-quin *[G].
In this case m, can be increased arbitrarily by increasing G and choosing q

! [ ¢ appropriately. However the bound for this scheme is proportional to “G“ and
it is not clear whether an increase of m, through G will reduce the error.
The term m in (7.1) indicates the dependence of the bound on the initial error

@
;‘ - vector Z(0). The factor El “A;le“ in (7.1) depends on the characteristics of

-,

the parasitic part and the term “H“ is a measure of the coupling between the

dominant and parasitic part of the plant. Apart from the common factor (7.1)

the bounds obtained for the parametrized adaptive observer are also functions

h -
s

of the characteristics of the observer gain F. The bound for the second

scheme is more cdomplicated due to the complexity of that scheme.

8. CONCLUSIONS

The results of the paper show that if the plant is stable, the adapta-
tive schemes considered remain bounded despite the reduction of the model order.
The bound on the observation and parameter error is of the order of the singular
perturbation parameter k,and is also a function of the characteristics of the
input, the initial parameter and state error and the convergence rate o, , which

would be achieved if there were no modeling error. The dependence of the error

1 on the input characteristics is found to be crucial and the most desirable

excitation signals are those which are sufficiently rich, but have a low value

Yy v < ¥

of { = suplfx(C)l. A trade off between Y and m, should be made when selecting the input
t
e sigt 11. The input does not have to be sufficiently rich for the full order
plant. The results of the paper are valid for almost every u(t) sufficiently

rich for the nth order dominant part of che plant. Thus u(t) can contain as
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many frequencies as required to be rich for the n-order plant except for a
particular combination of frequencies for which the richness of u(t) is reduced
by the parasitic input 7(t). Extensions of these results to model reference
adaptive control and other closed loop adaptive schemes is a topic for future

research.

ACKNOWLEDGEMENT

Contacts with W. Powers, R. Borcherts and G. Hopkins of Ford Motor

Company Scientific Research Labs. have contributed to the formulation of

problems treated ir this paper.




AT ™ A A APRCRAS I R A e A e N e A O CAMEIM IO ETIC AT ML e e e S e e L S R SE P A ]

,'«‘~ - et Lttt .ot et I T S UL VR SR S B R T R ] -t ale -7t
| g2

.i J APPENDIX 1

The stability of the adaptive observer in the presence of parasitics
n for Case 1 and 2 is equivalent to the stability of the following set of

. " differential equatious

‘ é-Ke+¢x1+\l'u-Hn+w+r, el-c'e (1.1)
. $ = Teu - (1.2)

] .
Y = -Melq (I1.3)

Proposition: For some vector signals v, q, w and r with v = G(p)xl, q = G(p)u,
w o= w(&:,u) and r = r(‘i’,q) the system (I.l1) is input ([xl,u,n']')-outpuc (el)

equivalent with the systemI.4 provided (¢',K) is completely observable

€ = Ke + d(¢'v + ¥'q] - Hn, g = c'e = e (1.4)
n Proof: From (I.1), (I.4)
.- c'(pI—K)-l[q:xl +Yu+w+r-do'v+vag)l (1.5)
] w.here 'p' is the d/dt operator. From (I.5) we have
%pn—iwx +Yu+w, +r, ~d,¢'v-d,¥'q]l =0 (1.6)
(=1 1*1 7 %y 17T Y 1

where i denotes the ith element of the corresponding vector. (I.6) is satisfied
by choosing v, q, w and r as given in Case 1 and Case 2. By considering the two
equivalent systems (I.1l), (I.2), (I.3) and (I.4), (I.2), (I.3) ., 4itis obvious

(Y that boundeness of [c',$',¥']' will imply boundeness of [e',d',¥'].

‘wr
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APPENDIX II

From (5.1) and (5.3)

(s) . - t(et_ay~ly D(s
YmT G(s) Gp(s) + c'(sI-A) n;-(;-g-

where

Gp(s) - ¢'(sI-A) 1B

is the transfer function of the plant when Hn = 0. Let

n-1 n=-2
bls + bzs + ... + bn

-1 n-2

Gp(S) =

where

4 ' [ '
a [al,az,...,an] and B = [bl’bZ""’bn]

are the unknown parameter vectors.

Consider a polynomial 5 (s+Ay) which is relatively prime to the
i=2

numerator as well as the denominator polynomials of Gp(s) and Ai # Aj for i,
n
j=2,3,...,n). Dividing the numerator and denominator of G(s) by = (s+-Ai)
i=2
and expanding them into partial fractions we have
b2 bn c'adj(sI-A)-IH n(s)
bl+s+>\2+"+s+kn itﬁz(s-h\i) u(s)
G(s) = + (II.1)
a a a a
_ __2 _ __.n -a - 2 n
s-a; ;:7; ST TER s-a s+k2"'s+x
Note that n n
c'adijsI-A)~l - [sn-l,sn_z,...,l] - [ a Y14 E €2y
n n i%2 s+ 1\’ {22 g+, "
iT_rz(s+>\i) -112(s+-xi) i i
(11.2)
a Cny
i%2 s+xi]
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! .[ II.1 can be written as o
D . a [bus) + a,y(s) + T,H1(s)]
S y(s) = glbjule) + ayy(s) + 4y s+ 1, (1I.3)

where

Ti - [tu, tZi""’tni]
AN

II.3 is represented in a block diagram form in Figure 2. The block diagram of
Figure 2 contains (3n-2) integrators and is a nonminimal realization of the
dominant part of the plant.

The term h'exp(At)x(0) in Figure 2 is added so that Figure 2 is
equivalent to the corresponding figure of a minimum realization of II.3 including
initial conditions. Here x = sz,x3,...,xn] and x is ;he state of the minimal
realization baéed.on II.3.

The nonminimal state-space representation given by (6.1), (6.2) can

be easily obtéined from Figure 2 by defining

= ' = 1
Rs [rz,r3,...,rn] , W [wz,w3,...,wn]

\Zs = [zz,z3,...,zn]' and Ts = [Té,T',...,T;]’

L. SO NP - : "




B ™= ridr]

Dt Ao 4
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APPENDIX II1

Equation (2.4) can be represented as

X = Fx + gy + Bu + Hn

where
r- ———
fl 1l 0...0
—
-f2 0 1 8,
F= . . R =
Do 1 *7 s,
! --fn 0 0...0 qu_

|
and g satisfies gc' = A-F.

From III.1l

Ft

x = 2F% & ft QF(t-r) F(t-1)
o o

{gy(t) + Bu(t)]dr + f: [} Hn(1)dr

The first convolution integral can be reduced to
£ 2P0 1y(0), Tu(n1dee pr = M(e)pr
where p*' = [g',B']. Thus (6.1)~(6.3) follows by taking

t F(t-1)

D(t) = fo L Hn(t)dT

......................... TR R

(I11.1)

(I1I1.2)

(II1.3)

(II1.4)

(III1.5)
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